sábado, 21 de septiembre de 2013

Las computadoras cuánticas - Cronologia completa [Parte Final]

Cronología

Años 80
A comienzos de la década de los 80, empezaron a surgir las primeras teorías que apuntaban a la posibilidad de realizar cálculos de naturaleza cuántica.

1981 - Paul Benioff
Las ideas esenciales de la computación cuántica surgieron de la mente de Paul Benioff que trabajaba en el Argone National Laboratory en Illinois (EE. UU.). Teorizó un ordenador tradicional (máquina de Turing) operando con algunos principios de la mecánica cuántica.

1981-1982 Richard Feynman
El Dr. Richard Feynman, físico del California Institute of Technology en California (EE. UU.) y ganador del premio Nobel en 1965 realizó una ponencia durante el “First Conference on the Physics of Computation” realizado en el Instituto Tecnológico de Massachusetts (EE. UU.) Su charla, bajo el título de “Simulating Physics With Computers" proponía el uso de fenómenos cuánticos para realizar cálculos computacionales y exponía que dada su naturaleza algunos cálculos de gran complejidad se realizarían más rápidamente en un ordenador cuántico.

1985 - David Deutsch
Este físico israelí de la Universidad de Oxford, Inglaterra, describió el primer computador cuántico universal, es decir, capaz de simular cualquier otro computador cuántico (principio de Church-Turing ampliado). De este modo surgió la idea de que un computador cuántico podría ejecutar diferentes algoritmos cuánticos.

Años 90
En esta época la teoría empezó a plasmarse en la práctica: aparecieron los primeros algoritmos cuánticos, las primeras aplicaciones cuánticas y las primeras máquinas capaces de realizar cálculos cuánticos.

1993 - Dan Simon
Desde el departamento de investigación de Microsoft (Microsoft Research), surgió un problema teórico que demostraba la ventaja práctica que tendría un computador cuántico frente a uno tradicional.
Comparó el modelo de probabilidad clásica con el modelo cuántico y sus ideas sirvieron como base para el desarrollo de algunos algoritmos futuros (como el de Shor).

1993 - Charles Benett
Este trabajador del centro de investigación de IBM en Nueva York descubrió el teletransporte cuántico y que abrió una nueva vía de investigación hacia el desarrollo de comunicaciones cuánticas.

1994-1995 Peter Shor
Este científico estadounidense de AT&T Bell Laboratories definió el algoritmo que lleva su nombre y que permite calcular los factores primos de números a una velocidad mucho mayor que en cualquier computador tradicional. Además su algoritmo permitiría romper muchos de los sistemas de criptografía utilizados actualmente. Su algoritmo sirvió para demostrar a una gran parte de la comunidad científica que observaba incrédula las posibilidades de la computación cuántica, que se trataba de un campo de investigación con un gran potencial. Además, un año más tarde, propuso un sistema de corrección de errores en el cálculo cuántico.

1996 - Lov Grover
Inventó el algoritmo de búsqueda de datos que lleva su nombre "Algoritmo de Grover". Aunque la aceleración conseguida no es tan drástica como en los cálculos factoriales o en simulaciones físicas, su rango de aplicaciones es mucho mayor. Al igual que el resto de algoritmos cuánticos, se trata de un algoritmo probabilístico con un alto índice de acierto.

1997 - Primeros experimentos
En 1997 se iniciaron los primeros experimentos prácticos y se abrieron las puertas para empezar a implementar todos aquellos cálculos y experimentos que habían sido descritos teóricamente hasta entonces. El primer experimento de comunicación segura usando criptografía cuántica se realiza con éxito a una distancia de 23 Km. Además se realiza el primer teletransporte cuántico de un fotón.

1998 - 1999 Primeros Qbit
Investigadores de Los Álamos y el Instituto Tecnológico de Massachusets consiguen propagar el primer Qbit a través de una solución de aminoácidos. Supuso el primer paso para analizar la información que transporta un Qbit. Durante ese mismo año, nació la primera máquina de 2-Qbit, que fue presentada en la Universidad de Berkeley, California (EE. UU.) Un año más tarde, en 1999, en los laboratorios de IBM-Almaden, se creó la primera máquina de 3-Qbit y además fue capaz de ejecutar por primera vez el algoritmo de búsqueda de Grover.

Año 2000 hasta ahora

2000 - Continúan los progresos

De nuevo IBM, dirigido por Isaac Chuang (Figura 4.1), creó un computador cuántico de 5-Qbit capaz de ejecutar un algoritmo de búsqueda de orden, que forma parte del Algoritmo de Shor. Este algoritmo se ejecutaba en un simple paso cuando en un computador tradicional requeriría de numerosas iteraciones. Ese mismo año, científicos de Los Álamos National Laboratory (EE. UU.) anunciaron el desarrollo de un computador cuántico de 7-Qbit. Utilizando un resonador magnético nuclear se consiguen aplicar pulsos electromagnéticos y permite emular la codificación en bits de los computadores tradicionales.

2001 - El algoritmo de Shor ejecutado
IBM y la Universidad de Stanford, consiguen ejecutar por primera vez el algoritmo de Shor en el primer computador cuántico de 7-Qbit desarrollado en Los Álamos. En el experimento se calcularon los factores primos de 15, dando el resultado correcto de 3 y 5 utilizando para ello 1018 moléculas, cada una de ellas con 7 átomos.

2005 - El primer Qbyte
El Instituto de “Quantum Optics and Quantum Information” en la Universidad de Innsbruck (Austria) anunció que sus científicos habían creado el primer Qbyte, una serie de 8 Qbits utilizando trampas de iones.

2006 - Mejoras en el control del cuanto
Científicos en Waterloo y Massachusetts diseñan métodos para mejorar el control del cuanto y consiguen desarrollar un sistema de 12-Qbits. El control del cuanto se hace cada vez más complejo a medida que aumenta el número de Qbits empleados por los computadores.

2007 - D-Wave
La empresa canadiense D-Wave Systems había supuestamente presentado el 13 de febrero de 2007 en Silicon Valley, una primera computadora cuántica comercial de 16-qubits de propósito general; luego la misma compañía admitió que tal máquina, llamada Orion, no es realmente una computadora cuántica, sino una clase de máquina de propósito general que usa algo de mecánica cuántica para resolver problemas.

2007 - Bus cuántico
En septiembre de 2007, dos equipos de investigación estadounidenses, el National Institute of Standards (NIST) de Boulder y la Universidad de Yale en New Haven consiguieron unir componentes cuánticos a través de superconductores.
De este modo aparece el primer bus cuántico, y este dispositivo además puede ser utilizado como memoria cuántica, reteniendo la información cuántica durante un corto espacio de tiempo antes de ser transferido al siguiente dispositivo.

2008 - Almacenamiento
Según la Fundación Nacional de Ciencias (NSF) de los EE. UU., un equipo de científicos consiguió almacenar por primera vez un Qubit en el interior del núcleo de un átomo de fósforo, y pudieron hacer que la información permaneciera intacta durante 1,75 segundos. Este periodo puede ser expansible mediante métodos de corrección de errores, por lo que es un gran avance en el almacenamiento de información.

2009 - Procesador cuántico de estado sólido
El equipo de investigadores estadounidense dirigido por el profesor Robert Schoelkopf, de la Universidad de Yale, que ya en 2007 había desarrollado el Bus cuántico, crea ahora el primer procesador cuántico de estado sólido, mecanismo que se asemeja y funciona de forma similar a un microprocesador convencional, aunque con la capacidad de realizar sólo unas pocas tareas muy simples, como operaciones aritméticas o búsquedas de datos.
Para la comunicación en el dispositivo, esta se realiza mediante fotones que se desplazan sobre el bus cuántico, circuito electrónico que almacena y mide fotones de microondas, aumentando el tamaño de un átomo artificialmente.

2011 - Primera computadora cuántica vendida
La primera computadora cuántica comercial es vendida por la empresa D-Wave Systems, fundada en 1999 a Lockheed Martin, por 10 millones de dólares.

2012 - Avances en chips cuánticos
IBM anuncia que ha creado un chip lo suficientemente estable como para permitir que la informática cuántica llegue a hogares y empresas. Se estima que en unos 10 o 12 años se puedan estar comercializando los primeros sistemas cuánticos.

2013 - Computadora cuántica más rápida que un computador convencional
En abril la empresa D-Wave Systems lanza el nuevo computador cuántico D-Wave Two el cual es 500000 veces superior a su antecesor D-Wave One, con un poder de calculo de 439 qubits. Éste fue comparado con un computador basado en el microprocesador Intel Xeon E5-2690 a 2.9 GHz, obteniendo el resultado en promedio de 4000 veces superior.

Las computadoras cuánticas - Algoritmos cuánticos [Parte 3]

Software para computación




Algoritmos cuánticos

-Los algoritmos cuánticos se basan en un margen de error conocido en las operaciones de base y trabajan reduciendo el margen de error a niveles exponencialmente pequeños, comparables al nivel de error de las máquinas actuales.
Algoritmo de Shor
Algoritmo de Grover
Algoritmo de Deutsch-Jozsa

-Modelos
Computadora cuántica de Benioff
Computadora cuántica de Feynman
Computadora cuántica de Deutsch

-Complejidad
La clase de complejidad BQP estudia el costo de los algoritmos cuánticos con bajo margen de error.

-Problemas propuestos
Se ha sugerido el uso de la computación cuántica como alternativa superior a la computación clásica para varios problemas, entre ellos:
*Factorización de números enteros
*Logaritmo discreto
*Simulación de sistemas cuánticos: Richard Feynman conjeturó en 1982 que los ordenadores cuánticos serían eficaces como simuladores universales de sistemas cuánticos, y en 1996 se demostró que la conjetura era correcta.

Las computadoras cuánticas - Hardware [Parte 2]

Hardware para computación cuántica

Condiciones a cumplir

El sistema ha de poder inicializarse, esto es, llevarse a un estado de partida conocido y controlado.
Ha de ser posible hacer manipulaciones a los qubits de forma controlada, con un conjunto de operaciones que forme un conjunto universal de puertas lógicas (para poder reproducir cualquier otra puerta lógica posible).
El sistema ha de mantener su coherencia cuántica a lo largo del experimento.
Ha de poder leerse el estado final del sistema, tras el cálculo.
El sistema ha de ser escalable: tiene que haber una forma definida de aumentar el número de qubits, para tratar con problemas de mayor coste computacional.



Procesadores

En 2004, científicos del Instituto de Física aplicada de la Universidad de Bonn publicaron resultados sobre un registro cuántico experimental. Para ello utilizaron átomos neutros que almacenan información cuántica, por lo que son llamados qubits por analogía con los bits. Su objetivo actual es construir una puerta cuántica, con lo cual se tendrían los elementos básicos que constituyen los procesadores, que son el corazón de los computadores actuales. Cabe destacar que un chip de tecnología VLSI contiene actualmente más de 100.000 puertas, de manera que su uso práctico todavía se presenta en un horizonte lejano.
Transmisión de datos[editar · editar código]
Científicos de los laboratorios Max Planck y Niels Bohr publicaron, en noviembre de 2005, en la revista Nature, resultados sobre la transmisión de información cuántica, usando la luz como vehículo, a distancias de 100 km[cita requerida]. Los resultados dan niveles de éxito en las transmisiones del 70%, lo que representa un nivel de calidad que permite utilizar protocolos de transmisión con autocorrección.
Actualmente se trabaja en el diseño de repetidores, que permitirían transmitir información a distancias mayores a las ya alcanzadas.




Las computadoras cuánticas - Problemas [Parte 1]

La computación cuántica es un paradigma de computación distinto al de la computación clásica. Se basa en el uso de qubits en lugar de bits, y da lugar a nuevas puertas lógicas que hacen posibles nuevos algoritmos.
Una misma tarea puede tener diferente complejidad en computación clásica y en computación cuántica, lo que ha dado lugar a una gran expectación, ya que algunos problemas intratables pasan a ser tratables. Mientras un computador clásico equivale a una máquina de Turing,1 un computador cuántico equivale a una máquina de Turing cuántica.



Problemas de la computación cuántica
Uno de los obstáculos principales para la computación cuántica es el problema de la decoherencia cuántica, que causa la pérdida del carácter unitario (y, más específicamente, la reversibilidad) de los pasos del algoritmo cuántico. Los tiempos de decoherencia para los sistemas candidatos, en particular el tiempo de relajación transversal (en la terminología usada en la tecnología de resonancia magnética nuclear e imaginería por resonancia magnética) está típicamente entre nanosegundos y segundos, a temperaturas bajas. Las tasas de error son típicamente proporcionales a la razón entre tiempo de operación frente a tiempo de decoherencia, de forma que cualquier operación debe ser completada en un tiempo mucho más corto que el tiempo de decoherencia. Si la tasa de error es lo bastante baja, es posible usar eficazmente la corrección de errores cuántica, con lo cual sí serían posibles tiempos de cálculo más largos que el tiempo de decoherencia y, en principio, arbitrariamente largos. Se cita con frecuencia una tasa de error límite de 10-4, por debajo de la cual se supone que sería posible la aplicación eficaz de la corrección de errores cuánticos.
Otro de los problemas principales es la escalabilidad, especialmente teniendo en cuenta el considerable incremento en qubits necesarios para cualquier cálculo que implica la corrección de errores. Para ninguno de los sistemas actualmente propuestos es trivial un diseño capaz de manejar un número lo bastante alto de qubits para resolver problemas computacionalmente interesantes hoy en día.




jueves, 19 de septiembre de 2013

La informática del futuro

Los dispositivos informáticos se adentrarán más en los sentidos humanos mediante el desarrollo de tecnología para imitar la capacidad de ver, oler, tocar, gustar y oír, según un estudio de la empresa y consultora IBM.




Gusto
El séptimo informe anual llamado IBM 5 en 5 es una lista de innovaciones que impactarán en los próximos cinco años. Los datos revelaron que las computadoras y otros dispositivos utilizarán algoritmos para determinar la estructura química precisa de los alimentos y por qué a las personas les gustan ciertos sabores.

“La tecnología no solo hará que los alimentos saludables sean más sabrosos, también nos sorprenderá con fusiones inusuales de comida, con el objetivo de maximizar la experiencia del gusto y el sabor”, afirmó el consorcio.

De acuerdo con IBM, diminutos sensores integrados a los ordenadores o teléfonos celulares detectarán si alguien podría enfermarse, gracias al análisis de las moléculas en el aliento del usuario. Estas herramientas ayudarán a los médicos a diagnosticar y monitorear la aparición de trastornos como asma, diabetes y epilepsia.

Tacto
Las plataformas táctiles, infrarrojas y de presión permitirán simular el tacto, a fin de experimentar la textura. “Al utilizar las vibraciones, cada dispositivo tendrá una serie única de patrones que emulará la sensibilidad de la piel”, destacó el estudio.

Oído
Aunque ya existen artilugios que reproducen sonido en alta definición, dentro de cinco años un sistema de sensores inteligentes detectará elementos como la presión del sonido, las vibraciones y las frecuencias. Asimismo, el informe predijo que se crearán sistemas para entender el lenguaje de los bebés, para ayudar a padres y pediatras.

Vista
El documento de IBM explicó que otra área clave para la innovación en computación será la capacidad de analizar datos visuales; es decir, la capacidad de ver.

Próximamente los sistemas de computación no solo serán capaces de reconocer los contenidos de imágenes y datos visuales, sino que convertirán los píxeles en significado, para otorgarles sentido de una forma similar a la que el ojo humano ve e interpreta una fotografía.

Olfato
El gran reto de los desarrolladores será crear aplicaciones o funciones que puedan emular la capacidad de percibir los aromas. Sin embargo, es una posibilidad muy lejana, ya que los mecanismos serían complejos y costos.

Reflexión
“Los científicos de todo el mundo trabajan en avances que ayudarán a los ordenadores a entender el mundo que los rodea”, afirmó Bernie Meyerson, vicepresidente de innovación de IBM.

“De la misma forma que el cerebro humano confía en interactuar con el universo utilizando múltiples sentidos, a través de la combinación de estos descubrimientos en forma conjunta, los sistemas cognitivos traerán un mayor valor y percepción, ayudándonos a resolver algunos de los desafíos más complejos”, concluyó el informe.



Datos
La realidad  virtual cambia la visión de un entorno físico, mientras que la realidad aumentada agrega elementos al contexto que observa la persona.
El informe  de IBM destaca que en los nuevos aparatos se utilizarán ambas tecnologías.
2 sentidos son utilizados en los sistemas actuales de realidad virtual, pues estimulan la vista y el oído.
1997 fue el año en el que comenzó a hablarse de realidad aumentada para dispositivos como televisores.

La generación actual [SEXTA GENERACIÓN 1990 HASTA LA FECHA]

Como supuestamente la sexta generación de computadoras está en marcha desde principios de los años noventas, debemos por lo menos, esbozar las características que deben tener las computadoras de esta generación. También se mencionan algunos de los avances tecnológicos de la última década del siglo XX y lo que se espera lograr en el siglo XXI. Las computadoras de esta generación cuentan con arquitecturas combinadas Paralelo / Vectorial, con cientos de microprocesadores vectoriales trabajando al mismo tiempo; se han creado computadoras capaces de realizar más de un millón de millones de operaciones aritméticas de punto flotante por segundo (teraflops); las redes de área mundial (Wide Area Network, WAN) seguirán creciendo desorbitadamente utilizando medios de comunicación a través de fibras ópticas y satélites, con anchos de banda impresionantes. Las tecnologías de esta generación ya han sido desarrolla das o están en ese proceso. Algunas de ellas son: inteligencia / artificial distribuida; teoría del caos, sistemas difusos, holografía, transistores ópticos, etcétera.



En esta investigación acerca de las generaciones de las computadoras nos hemos dado cuenta del avance que han tenidos y , gracias a los avances en relación a ellas hemos alcanzado un nivel de tecnología muy elevado el cual nos ha servido para muchas áreas, como por ejemplo las comunicaciones, la medicina, la educación, etc.
La investigación actual va dirigida a aumentar la velocidad y capacidad de las computadoras se centra sobre todo en la mejora de la tecnología de los circuitos integrados y en el desarrollo de componentes de conmutación aún más rápidos. Se han construido circuitos integrados a gran escala que contienen varios millones de componentes en un solo chip.
Las computadoras se han convertido en la principal herramienta utilizada por el hombre y ya son parte esencial de cada uno de nosotros, y usted deberá aprender todas esas, antes complicadas hoy comunes tecnologías modernas.

Fuente

La Informática y sus orígenes

La informática es una ciencia que estudia métodos, procesos, técnicas, con el fin de almacenar, procesar y transmitir información y datos en formato digital. La informática se ha desarrollado rápidamente a partir de la segunda mitad del siglo XX, con la aparición de tecnologías tales como el circuito integrado, Internet y el teléfono móvil.







En los inicios del proceso de información, con la informática sólo se facilitaban los trabajos repetitivos y monótonos del área administrativa. La automatización de esos procesos trajo como consecuencia directa una disminución de los costos y un incremento en la productividad. En la informática convergen los fundamentos de las ciencias de la computación, la programación y metodologías para el desarrollo de software, la arquitectura de computadores, las redes de computadores, la inteligencia artificial y ciertas cuestiones relacionadas con la electrónica. Se puede entender por informática a la unión sinérgica de todo este conjunto de disciplinas. Esta disciplina se aplica a numerosas y variadas áreas del conocimiento o la actividad humana, como por ejemplo: gestión de negocios, almacenamiento y consulta de información, monitorización y control de procesos, industria, robótica, comunicaciones, control de transportes, investigación, desarrollo de juegos, diseño computarizado, aplicaciones / herramientas multimedia, medicina, biología, física, química, meteorología, ingeniería, arte, etc. Puede tanto facilitar la toma de decisiones a nivel gerencial (en una empresa) como permitir el control de procesos críticos. Actualmente es difícil concebir un área que no use, de alguna forma, el apoyo de la informática. Ésta puede cubrir un enorme abanico de funciones, que van desde las más simples cuestiones domésticas hasta los cálculos científicos más complejos. Entre las funciones principales de la informática se cuentan las siguientes:
-Creación de nuevas especificaciones de trabajo
-Desarrollo e implementación de sistemas informáticos
-Sistematización de procesos
-Optimización de los métodos y sistemas informáticos existentes
-Facilita la automatización de datos

Más información aquí
Gadget de animacion Social - Widgets para Blogger